- Y/616/7445 Unit 039 Diabetes Awareness Assignment: Understanding, Managing and Supporting Individuals with Diabetes
- DHCS 12 (M/650/5189) Understand Mental Ill Health Assignment: Explore DSM/ICD Disorders, Discrimination & Capacity
- Unit 8 Social Media Strategy Assignment 2: Planning, Execution & Evaluation for Organisational Growth
- CIPD Level 7CO01 Strategic People Management Assignment: Demographic Trends, Legal Reforms, Innovation & Resilience in the Workplace
- Financial Accounting Assignment: Leeβs Sole Trader Transactions & Cash Flow Analysis
- L/508/4603 NCFE Level 3 Sport and Exercise Massage Assignment 3: Consultation & Technique Review for Two Contrasting Athletes
- F/650/1141 Unit 4 Team Management and Recruitment Assignment: Health & Social Care Case Study for Effective Leadership and PDPA-Compliant Hiring
- R/650/1138 OTHM Level 5 Assignment: Working in Partnership in Health and Social Care
- NVQ Level 3 Health and Safety Risk Management Assignment: Practical Assessment and Workplace Application
- MBA7068 Strategic Portfolio Assignment 1: Global Business Trends and Managerial Skill Development
- Mechanical Services Innovation: Hotel Rotation Case Study for Energy-Efficient Heat Pump Integration
- K/618/4170 ATHE Level 3 Unit 4 Assignment: Working in Health and Social Care
- T/618/4169 ATHE Level 3 Unit 3 Assignment: Human Growth and Development in Health and Social Care
- M/618/4168 ATHE Level 3 Unit 2 Assignment: Principles, Values and Regulation in the Health and Social Care Sector
- K/618/4167 ATHE Level 3 Unit 1 Assignment: Structure and Overview of the Health and Social Care Sector in the UK
- NURS07039 Assignment: Enhancing Critical Thinking and Development in Nursing Education
- AUEC3 Mechanical Engineering Assignment Questions: AUEC3-070, AUEC3-065, AUEC3-059, AUEC3-054, AUEC3-003, AUEC3-002 & AUEC3-001
- HGES315 Political Geography Assignment: Regional Order in Southern Africa
- AC312 Assignment: Managerial Promotion Decision Using Balanced Scorecard and Risk Indicators
- Qualifi Level 4 T/505/9498 Academic Study Skills Assignment: A Reflective and Evidence-Based Approach
MATHS4102: Effective heat transfer is essential for energy systems. In a smooth channel, heat transfer is achieved by forced convection: Fluid Mechanics Assignment, UOG, UK
University | University of Glasgow (UOG) |
Subject | MATHS4102: Fluid Mechanics |
Effective heat transfer is essential for energy systems. In a smooth channel, heat transfer is achieved by forced convection. Relatively easy in manufacturing and assembling, corrugated channels with ribs on the walls have been widely used to enhance heat transfer by increasing the surface area. The corrugation configuration impacts both thermal and hydraulic characteristics of the channel flow, which can be quantified by the Nusselt
number ππ’ and the pressure drop Ξπ, respectively. Different rib shapes have been used and effects on heat exchange investigated. In this study, we will investigate the effects of ribs in a rectangular shape on turbulent heat transfer in a corrugated channel.
Figure 1 presents the two-dimensional cooling channel. The length and (half) height of the channel are πΏ and π», respectively. For the corrugated channel, three equitized ribs are placed in the middle of the channel and attached to the cooling wall. The distances of the rib set to the inlet and outlet are therefore equal and both π· (see Fig. 1). The length and width of a rib are π and π, respectively. The space between two ribs is π. A unique set of parameters π, π, π, and π· will be set up for each student. The other parameters are common. πΏ = 50 mm and π» = 5 mm. The velocity and temperature of the hot air flow entering the channel are π0 = 50 m s -1 and π0 = 500 K, respectively. The temperature of the cooling wall is ππ€ = 300 K. Symmetric conditions are to be used for the top boundary of the domain.
where β is the heat transfer coefficient (W m-2 K-1 ); π·h is the hydraulic diameter (m); π is the thermal conductivity of air at π0. π = 33.45Γ10-3 W m-1 K-1 . β is determined by β = π β²β²/(ππ€ β πΜ f), where πβ²β² is the (average) heat flux (W m-2 ); πΜ f is the volume-averaged fluid temperature (K). π·h = 4π΄/π·wp, where π΄ is the cross-section area (m2 ) and π·wp the wetted perimeter (m). In this study, π·h β 4π» = 20 mm.
You are required to complete the following:
1. Perform a mesh independency study on the corrugated channel flow case by using two meshes, one Coarse and the other Fine. Demonstrate the Coarse mesh can produce satisfying results, which are close to the Fine-mesh ones. For this purpose, compare velocity, temperature, and turbulence kinetic energy (TKE) on the Measuring Probe (see Fig. 1), which is π·/2 away from the outlet. You will then use the Coarse mesh ONLY to conduct the following simulations on both the smooth and corrugated channels.
2. Compare the Nusselt number and total pressure loss between the smooth and corrugated channels. Analyze the causes of the differences. Note: in addition to the increased heat transfer surface area due to the ribs, changes to flow characteristics, e.g. enhanced flow turbulence, induced by the ribs are another major cause of the enhanced heat transfer. Investigations and comparisons of TKE and fluid temperature using contour plots are therefore recommended since TKE is an indicator of flow turbulence intensity. Velocity vector plots can be used to investigate whether and how local flow mixing and thus heat transfer have been affected by the ribs.
3. Determine and compare the pressure loss or drop Ξπ between the two cases. Use Total Pressure. Analyze the differences.
4. Analysis and comparison of heat transfer performance among the three ribs and their respective surfaces is expected. Suggestions on further enhancement of the heat transfer based on the analysis are encouraged to make.
Buy Answer of This Assessment & Raise Your Grades
looking for urgent assignment help then Students Assignment Help UK is the one-stop website. here you can hire experts according to your project need. our writers are available 24*7 hours to provide flawless assistance on engineering assignments at market price.
