- Care Safeguiding Children Assignment | Oxford Brookes University
- PSY4011 Developmental Psychology Assessment Brief | Arden University
- QSP7PCM Professional Cost Management Assignment 2 September 2025 | UCEM
- EGR2006M Control Systems Assignment 1 Brief | University of Lincoln
- MBA7066 Innovation and Entreprenuership Assignment Portfolio 2025 | UGM
- Contract Law Assessment 2 Problem Scenario 2025-26 | University Of Salford
- Operations & Supply Chain Management Assignment Brief : E-Commerce Supply Chain Efficiency
- Unit 1 Programming Assignment 2025-26 | ESOFT Metro Campus
- K/651/4745 Unit 1 Teaching My Subject Written Assignment | Britannia Education Group
- H/650/1099 Level 4 Academic Writing and Research Skills Assignment Brief | LSBU
- ASB-4012 Codding for Business Application Assignment – Project in R | Bangor University
- Unit: Team Management in Health and Social Care OTHM Level 5 Diploma Assignment
- BTEC Level 3 Unit 4 Programming Assignment – Concepts of Programming
- HSO4004 Principles of Care Assignment-1 and Assignment-2 Semester-1 September 2025-26
- 1031ENG-N Civil Engineering Construction Technology In-Course Assessment (ICA) Group Report | Teesside University (TU)
- MOD009382 Finance and Governance in Health and Social Care 011 Assessment Coursework Report | Anglia Ruskin University
- Geotechnical Engineering Assignment 2025/26 – University Of Surrey (UniS)
- Essentials of Adult Nursing Summative Assessment – University of Roehampton London (UoRL)
- BMP3006 Practical Digital Marketing Assessment 1 Individual Written Portfolio September 2025 – Regent College London
- CIPD_5HR03_24_01 5HR03 Reward for Performance and Contribution Level 5 Associate Diploma Learner Assessment Brief – Chartered Institute of Personnel and Development
CIS4000: control system for the Vertical Farming Water System The control algorithm is implemented on a MicroController Unit: Computational Thinking Assignment UK
The above figure shows a control system for the Vertical Farming Water System. The control algorithm is implemented on a MicroController Unit (MCU) as follows:
The initial state is: the Water Reservoir is Empty, the Nutrient Container is not empty only with essential nutrients.
- The Valve can be open only if one of the following conditions is true:
– Tank 1 (Water Reservoir) is not full,
– Tank 2 (Nutrient Container) is empty.
- The Tank 1 (Water Reservoir) passes from the state full to the state empty exactly after 10 minute the refill (T1 is the time since the last refilling).
- The Tank 2 (Nutrient Container) passes from the state full to the state normal exactly after 24 hours the refill (T2 is the time since the last refilling).
For keeping the level of the two Tanks (Water Reservoir or Nutrient Container) in normal conditions, propose a strategy in which the Water Refill System avoid that the tanks are empty (exception the first filling stage of Tank 1 Water Reservoir).
Hypothesis:
1) Refilling time for the Tank 1 Water Reservoir TR1=0.2*T1,
2) Refilling time for the Tank 2 Nutrient Container: if Tank 1 Water Reservoir is Full and Tank 2 Nutrient Container is not Full, then TR2=20*T1.
The above figure shows a control system for the Vertical Farming Water System. The control algorithm is implemented on a MicroController Unit (MCU) as following:
The initial state is: the Water Reservoir is Empty, the Nutrient Container is not empty only with essential nutrients.
• The Valve can be open only if one of the following conditions is true:
– Tank 1 (Water Reservoir) is not full,
– Tank 2 (Nutrient Container) is empty.
• The Tank 1 (Water Reservoir) passes from the state full to the state empty exactly after 10 minute the refill (T1 is the time since the last refilling).
• The Tank 2 (Nutrient Container) passes from the state full to the state normal exactly after 24 hours the refill (T2 is the time since the last refilling).
For keeping the level of the two Tanks (Water Reservoir or Nutrient Container) in normal conditions, propose a strategy in which the Water Refill System avoid that the tanks are empty (exception the first filling stage of Tank 1 Water Reservoir).
Hypothesis:
1) Refilling time for the Tank 1 Water Reservoir TR1=0.2*T1,
2) Refilling time for the Tank 2 Nutrient Container: if Tank 1 Water Reservoir is Full and Tank 2 Nutrient Container is not Full, then TR2=20*T1.
For emergency purpose,
– If both Tanks Water Reservoir Empty an Nutrient Container are marking Empty, then the MCU must leave what it does and for a period of 10 minutes:
– turn OFF both Water Pump 1 and Water Pump 2
– 20 sec toggle of the buzzer
– send an alarm message to the screen as “Emergency: Water Reservoir Empty”.
– after finishing the 10 minutes, it will return to its normal operation.
– a push button is connected to MCU. As soon as the operator press this button, the MCU must leave what it does and for a period of 4 minutes:
– turn OFF both Water Pump 1 and Water Pump 2.
– 1 sec toggle of the buzzer
– send an alarm message to the screen as” Emergency: Manual Stop”.
– after finishing the 4 minutes, it will return to its normal operation.
This assessment consists of four parts:
1) Apply the constituent parts of Computational Thinking and discuss the results of each.
2) Express the algorithm used in the solution using a flowchart.
3) Express the algorithm using pseudocode.
4) Implement the solution in Python or any programming language you prefer (Bonus).
Buy Answer of This Assessment & Raise Your Grades
If you are a scholar of engineering and want to grow your rank in your CIS4000: Computational Thinking homework task? then don’t worry Students Assignment Help UK has a team of trustworthy writers who have in-depth knowledge to prepare a customized solution for engineering assignments at the most reasonable price.



