- Care Safeguiding Children Assignment | Oxford Brookes University
- PSY4011 Developmental Psychology Assessment Brief | Arden University
- QSP7PCM Professional Cost Management Assignment 2 September 2025 | UCEM
- EGR2006M Control Systems Assignment 1 Brief | University of Lincoln
- MBA7066 Innovation and Entreprenuership Assignment Portfolio 2025 | UGM
- Contract Law Assessment 2 Problem Scenario 2025-26 | University Of Salford
- Operations & Supply Chain Management Assignment Brief : E-Commerce Supply Chain Efficiency
- Unit 1 Programming Assignment 2025-26 | ESOFT Metro Campus
- K/651/4745 Unit 1 Teaching My Subject Written Assignment | Britannia Education Group
- H/650/1099 Level 4 Academic Writing and Research Skills Assignment Brief | LSBU
- ASB-4012 Codding for Business Application Assignment – Project in R | Bangor University
- Unit: Team Management in Health and Social Care OTHM Level 5 Diploma Assignment
- BTEC Level 3 Unit 4 Programming Assignment – Concepts of Programming
- HSO4004 Principles of Care Assignment-1 and Assignment-2 Semester-1 September 2025-26
- 1031ENG-N Civil Engineering Construction Technology In-Course Assessment (ICA) Group Report | Teesside University (TU)
- MOD009382 Finance and Governance in Health and Social Care 011 Assessment Coursework Report | Anglia Ruskin University
- Geotechnical Engineering Assignment 2025/26 – University Of Surrey (UniS)
- Essentials of Adult Nursing Summative Assessment – University of Roehampton London (UoRL)
- BMP3006 Practical Digital Marketing Assessment 1 Individual Written Portfolio September 2025 – Regent College London
- CIPD_5HR03_24_01 5HR03 Reward for Performance and Contribution Level 5 Associate Diploma Learner Assessment Brief – Chartered Institute of Personnel and Development
NHA2414: Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function: Dynamic Analysis and Control Assignment, UOH, UK
| University | University of Huddersfield (UOH) |
| Subject | NHA2414: Dynamic Analysis and Control |
Task 1
The quarter-car model of a vehicle suspension and its free body diagram is shown in Figure 1. In this simplified model, the masses of the wheel, tire, and axle are neglected, and the mass m represents one-fourth of the vehicle mass. The spring constant k models the elasticity of both the tire and the suspension spring. The damping constant c models the shock absorber. The equilibrium position of m when y=0 is x=0. The road surface displacement y(t) can be derived from the road surface profile and the car’s speed.
- Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function.

If assume:
m=250 kg
k=10000, 30000, 50000 N/m
c=1000, 2000, 3000 N.s/m
- Plot magnification ratio vs frequency ratio (r=0-4) diagrams for the parameters given above (you can draw the three curves in one diagram for three different k values and do the same for the three c values as well).
- Use the derived transfer function to model the system and plot the step response for the system by Matlab or Simulink.
Task 2
A common example of base excitation is caused by a vehicle moving along a bumpy road surface as shown in Figure 2. This motion produces a displacement input to the suspension system via the wheels. The second task is to calculate and draw a displacement transmissibility ratio diagram for a quarter car with 250 kg, the spring constant is 10000 N/m, but varying damping constant to be 1000, 2000, 3000, 5000, and 10000 N.s/m. If the vehicle driver wishes to reduce the vehicle’s body displacement, what suggestion you could make for the driver and why?

Are You Looking for Answer of This Assignment or Essay
Do you need help with NHA2414: Dynamic Analysis and Control assignments? Don’t look further and take our pay for college assignments service at Students Assignment Help UK. our executives are available 24*7 hours to provide appropriate solutions on engineering assignments at a market price.



