- Unit 5 Understand the Role of the Social Care Worker Assessment Question 2026
- Leading and Managing Change Assessment 1 2026 | University of Greenwich
- 6F7V0020 Biodiversity, Natural Capital and Ecosystem Services Summative In-Course Assessment Briefing 2026
- BTEC HND Level 5 Unit 4 The Hospitality Business Toolkit Assignment Brief 2026
- BTEC Level 3 Unit 2 Working in Health and Social Care Assigment 2026
- BTEC Level 1-2 Unit 20 Building a Personal Computer Internal Assessment 2026
- BTEC Level 2 Unit 11 Computer Networks Assignment Brief 2026 | Pearson
- BTEC Level 4/5 Unit 06 Construction Information Assignment Brief 2026
- BA601 Management Control Qualifi Level 6 Assessment Brief 2026 | UEL
- MLA603 Maritime Regulation and Governance Assessment Brief 2026 | MLA College
- Introduction to Organizational Behavior Assessment Critical Essay | NTU
- ILM Level 4 Unit 416 Solving Problems by Making Effective Decisions in the Workplace Assignment
- NURS08059 Resilience in Healthcare Assignment Guide 2026 | UWS
- ILM Level 4 Unit 409 Managing Personal Development Assignment 2026
- BTEC Level 3 Unit 1 Axborot Texnologiyalari Tizimlari Assignment Brief 2026
- NI523 Approaches to Nursing Adults with Long Term Conditions Assignment Workbook 2026 | UOB
- GBEN5004 Social Entrepreneurship Assignment Brief 2026 | Oxford Brookes University
- EBSC6017 Data Mining for Marketers Unit Handbook 2026 | UCA
- A7080 Recent Advances in Ruminant Nutrition Individual Assignment 2025/26 | HAU
- ST2187 Business Analytics, Applied Modelling and Prediction Assignment | UOL
NHA2414: Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function: Dynamic Analysis and Control Assignment, UOH, UK
| University | University of Huddersfield (UOH) |
| Subject | NHA2414: Dynamic Analysis and Control |
Task 1
The quarter-car model of a vehicle suspension and its free body diagram is shown in Figure 1. In this simplified model, the masses of the wheel, tire, and axle are neglected, and the mass m represents one-fourth of the vehicle mass. The spring constant k models the elasticity of both the tire and the suspension spring. The damping constant c models the shock absorber. The equilibrium position of m when y=0 is x=0. The road surface displacement y(t) can be derived from the road surface profile and the car’s speed.
- Draw a free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function.

If assume:
m=250 kg
k=10000, 30000, 50000 N/m
c=1000, 2000, 3000 N.s/m
- Plot magnification ratio vs frequency ratio (r=0-4) diagrams for the parameters given above (you can draw the three curves in one diagram for three different k values and do the same for the three c values as well).
- Use the derived transfer function to model the system and plot the step response for the system by Matlab or Simulink.
Task 2
A common example of base excitation is caused by a vehicle moving along a bumpy road surface as shown in Figure 2. This motion produces a displacement input to the suspension system via the wheels. The second task is to calculate and draw a displacement transmissibility ratio diagram for a quarter car with 250 kg, the spring constant is 10000 N/m, but varying damping constant to be 1000, 2000, 3000, 5000, and 10000 N.s/m. If the vehicle driver wishes to reduce the vehicle’s body displacement, what suggestion you could make for the driver and why?

Are You Looking for Answer of This Assignment or Essay
Do you need help with NHA2414: Dynamic Analysis and Control assignments? Don’t look further and take our pay for college assignments service at Students Assignment Help UK. our executives are available 24*7 hours to provide appropriate solutions on engineering assignments at a market price.



