- Y/616/7445 Unit 039 Diabetes Awareness Assignment: Understanding, Managing and Supporting Individuals with Diabetes
- DHCS 12 (M/650/5189) Understand Mental Ill Health Assignment: Explore DSM/ICD Disorders, Discrimination & Capacity
- Unit 8 Social Media Strategy Assignment 2: Planning, Execution & Evaluation for Organisational Growth
- CIPD Level 7CO01 Strategic People Management Assignment: Demographic Trends, Legal Reforms, Innovation & Resilience in the Workplace
- Financial Accounting Assignment: Lee’s Sole Trader Transactions & Cash Flow Analysis
- L/508/4603 NCFE Level 3 Sport and Exercise Massage Assignment 3: Consultation & Technique Review for Two Contrasting Athletes
- F/650/1141 Unit 4 Team Management and Recruitment Assignment: Health & Social Care Case Study for Effective Leadership and PDPA-Compliant Hiring
- R/650/1138 OTHM Level 5 Assignment: Working in Partnership in Health and Social Care
- NVQ Level 3 Health and Safety Risk Management Assignment: Practical Assessment and Workplace Application
- MBA7068 Strategic Portfolio Assignment 1: Global Business Trends and Managerial Skill Development
- Mechanical Services Innovation: Hotel Rotation Case Study for Energy-Efficient Heat Pump Integration
- K/618/4170 ATHE Level 3 Unit 4 Assignment: Working in Health and Social Care
- T/618/4169 ATHE Level 3 Unit 3 Assignment: Human Growth and Development in Health and Social Care
- M/618/4168 ATHE Level 3 Unit 2 Assignment: Principles, Values and Regulation in the Health and Social Care Sector
- K/618/4167 ATHE Level 3 Unit 1 Assignment: Structure and Overview of the Health and Social Care Sector in the UK
- NURS07039 Assignment: Enhancing Critical Thinking and Development in Nursing Education
- AUEC3 Mechanical Engineering Assignment Questions: AUEC3-070, AUEC3-065, AUEC3-059, AUEC3-054, AUEC3-003, AUEC3-002 & AUEC3-001
- HGES315 Political Geography Assignment: Regional Order in Southern Africa
- AC312 Assignment: Managerial Promotion Decision Using Balanced Scorecard and Risk Indicators
- Qualifi Level 4 T/505/9498 Academic Study Skills Assignment: A Reflective and Evidence-Based Approach
B50EM: Compare and contrast the design principles for wind turbines and tidal turbines. Your review should focus on the sizing: Advanced Mechanics of Materials I Assignment, HWU, UK
University | Heriot-Watt University (HWU) |
Subject | B50EM: Advanced Mechanics of Materials I |
Part 1 – Review of Energy-Generating Turbine Blade Design
Compare and contrast the design principles for wind turbines and tidal turbines. Your review should focus on the sizing, geometric design, and materials of construction of the blades and should consider the changes in the design dictated by the different types of loading involved.
Part 2: Analytical design
Use two simple models of a blade, assuming it to be a rectangular sheet with either one end or the edge fixed, as illustrated in Figure. Stack the upper and lower surfaces of sector 2 on top of each other to make a single laminate.
Fig. A- Simplified flap-wise model of Sector 2
Fig. B- Simplified edgewise model of Sector 2
Using a [0/45/90/-45]2s lay-up carbon fiber epoxy laminate for the two surfaces stacked together, determine appropriate values of Vf and thickness for the plies to ensure that the composite meets the design deflections under the anticipated peak current loading4 and meets the Tsai-Hill strength criterion with an appropriate factor of safety. Carry out the calculation for each model, and select the lay-up that you consider is the more appropriate of the two.
Part 3: Numerical design
Using the orthotropic modulus from Part 1, build FE model of the simplified configurations you used (Figures A and B) and validate your flapwise and edgewise deflections under the maximum current loading that you used in Part 1. Next, using the material that you designed in Part 1, apply both the edge and end fixities simultaneously. Again, apply the maximum current loading and determine the resulting edgewise and flapwise deflections. Reserve your comments on this result for Part 4.
Part 4: Damage mechanics and fatigue
Using the orthotropic modulus and simplified model from Part 1, but using selected values of mid-surface curvature from Part 2, assess the fatigue life of the blade, assuming an R-ratio of -1, and what you consider to be an appropriate value of stress range. Use the Goodman diagram given in Figure.
Make suggestions for changes to your material design and suggest a full-scale fatigue testing regime for a prototype blade.
Goodman diagram for [0/45/90/-45]2s carbon fibre epoxy laminate
Do You Need Assignment of This Question
Looking for a coursework writing service that delivers quality work at an affordable price? Look no further than StudentsAssignmentHelp.co.uk! Our assignment writing experts will provide tailored solutions to meet all your academic needs, enabling you to achieve success without breaking the bank.
