- NVQ Level 5 Unit 510: Understand how to make effective and positive decisions: Decision Making In Adult Care, Assignment, UK
- CIPD Level 7 7CO01 : June 2024 – Assess the trend towards greater globalisation of international business activity: Work and working lives in a changing business environment, Assignment, UK
- Level 6 NVQ : Describe the nature and role of a positive health and safety culture within the organisation: Diploma in Occupational Health and Safety Practice, Assignment, UK
- Review relevant organizational behaviour theories, such as conflict resolution strategies, leadership styles, and team dynamics: People and organisations, Assignment, UK
- 3CO02: Explain what evidence-based practice is and how it might be applied within an organisation : Principles of analytics CIPD Level 3, Assignment, UK
- Wind tunnel testing plays an important role in the design of aircraft. It provides a check on the accuracy of the initial design: Aerospace Engineering, Coursework, UOL, UK
- Select and apply appropriate computational and analytical techniques to model complex problems, recognising the limitations of the techniques employed :AHEP- Assignment 1 , UK
- Cipd level 5 5HR01 Assignment 3 June 2024 : Employment relationship management, UK
- Pearson BTEC Level 3 Unit 6: Website Development : Website evaluation, Assignment, UK
- BTEC Unit 20: Explain, analyze, optimize, and enhance the operation of a simple combinational logic circuit with three (03) fail-safe sensors and one (01) emergency shutdown switch- Digital Principles Assignment 1, UK
- Complete a report to compare three academic sources to identify levels of relevance and application: Health wellbeing and social care, Assignment, UK
- Fluid Power Diagrams – Applications Of Pneumatics And Hydraulics, Tutor Marked Assignment 2, TU, UK
- Fluid Power Diagrams – Applications Of Pneumatics And Hydraulics, Tutor Marked Assignment 1, TU, UK
- Pearson BTEC Level 3 Unit 8 Mechanical Principles of Engineering Systems : Statics, Assignment, UK
- CBB508 – Understand the structure of the eukaryotic cell and the functions of the different components: Cells Assignment, OCN, UK
- Unit4003: Engineering Science I : Examine scientific data using both quantitative and qualitative methods, Assignment, HNC, UK
- COM4007 – Identify design, usability and accessibility issues involved in delivering websites: Introduction to Web Authoring Assignment, AU, UK
- Access to HE Diploma Assessment Materials Sourcing and Reading Information (2024-25) : Computing, Assignment, OCN, UK
- Level 5 This unit will develop your knowledge of the importance of leadership and management theories and styles: The Principles of Leadership and Management in Adult Social Care, Assignment, UK
- Unit 4 – Identify indicators of your wellbeing and wellbeing deterioration: Promoting Personal Wellbeing, Assignment, UK
A motor-pump assembly in a pumping station experiences severe vibration (may not be at resonance) when the motor operates: Acoustical and Vibration Engineering, Assignment, UOS, UK
University | University of Southampton (UOS) |
Subject | Acoustical and Vibration Engineering |
A motor-pump assembly in a pumping station experiences severe vibration (may not be at resonance) when the motor operates at its normal operating speed of 2500 rpm. After a 1.5 kg un-damped absorber tuned to 2500 rpm is added to the part of the assembly, the system’s new natural frequencies are measured as 2492 rpm and 2509 rpm.
(a) What is the equivalent mass of the motor-pump assembly
(b) Determine the new absorber mass to change the system’s natural frequencies outside the range from 2440 rpm to 2535 rpm.
Question Two:
(a) An aircraft lift on an aircraft carrier can be modeled as a rack-and-gear system, shown in Figure Q2-a below. The mass of the spring is negligible. The system also consists of two identical gears of pitch radius r and centroidal mass moment of inertial J, a rack of mass At, and a spring of stiffness it
(a-1) Use Rayleigh’s energy method to derive the equation of motion of the vibration system with respect to the translational motion of mass M;
(a-2) Determine the system’s natural frequency.
Question Two:
(b) A simplified vibration model for the chassis and suspension system of a car can be represented as a mass-spring system, shown in Figure Q2-b. M and m are the masses of the chassis and wheel assembly. lc, and k2 is the stiffness of the suspension spring and tires respectively.
(b-1) Develop a vibration model (equation of motion) for the system;
(b-2) Determine the dynamic matrix of the system.
Question Four
Figure Q4 shows a simplified vibration model for a machine of mass m mounted on a foundation which is modeled as a spring and damper system. The mass of the machine is 1500 (kg). The spring stiffness constant of the elastic foundation is k=60 (MN/m) and the damping coefficient is c-4000 (N-s/m).
The machine has an unbalanced component rotating at a constant angular velocity w = 205 (rad/s), which has a vertical component of the centripetal force off,(r)= 15 sin(ta) (N) acting on the machine.
(a) Derive the equation of motion of the vibration system;
(b) Determine the natural frequency and damping ratio of the vibration system;
(c) Derive the expression of the steady-state amplitude in terms of the natural frequency, damping ratio of the motion of the machine, and determine the steady-state amplitude of the vibration system;
(d) Determine the amplitude of the vibration dynamic loads acting on the base of the machine.
Are You Looking for Answer of This Assignment or Essay
Need help with your Acoustical and Vibration Engineering assignment? Our online assignment help for students is just what you need! UK students can pay someone to do my assignment and receive expert assistance. We also provide help with engineering assignments, including accurate assignment answers to boost your success. Get professional support and complete your coursework with ease!